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Modelling fracture in an Al,O; particle reinforced
AA 6061 alloy using Weibull statistics
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Fracture in an AA 6061 based metal matrix composite (MMC) containing 20 vol % Al,03
particles is modelled using an axisymmetrical finite element model and a statistical
approach for calculating the strength of reinforcing ceramic particles via the Weibull model.
Within this model, variables such as the volume fraction, particle size and matrix alloy
properties can be varied. When modelling the fracture behaviour of one particle, it is
assumed that the survival probability of the ceramic particle is governed by a Weibull
distribution. Fracture statistics of the MMC is examined by plotting the survival probability
of an Al,O3 particle vs. the macroscopic axial stress applied on the whole MMC. Based on
initial calculations it can be concluded that the relation between the macroscopic applied
stress on the MMC and the survival probability of the ceramic particle can be described by
the Weibull modulus m, as long as the stress distribution in the matrix surrounding the
particle is proportional to the applied load and that triaxial loading of the MMC results in a
lower survival probability compared to uniaxial loading. Fracture behaviour of MMCs can
well be described and a ‘mastercurve’ can be made for various characteristic stresses and
matrix yield stresses at a specific hardening exponent for the matrix material. © 7999
Kluwer Academic Publishers

1. Introduction during plastic deformation and that the survival proba-
Due to their high strength, high stiffness and high resisbility decreases with reinforcement size. In this paper,
tance to wear, ceramic particle reinforced metal matrixhe survival probability of the reinforcing particlesis as-
composites (MMCs) have attracted considerable attersumed to be governed by a Weibull distribution. Within
tion in the past two decades. A reason for using anyhe cell model, variables such as, loading triaxiality, par-
composite material is the extent to which the qualitiedticle size, particle properties and matrix alloy properties
of two or more constituents can be combined, withoutare varied to investigate the parameter dependence of
seriously accentuating their shortcomings [1]. The mosparticle fracture.
widely applied metals as matrix material for MMCs are
aluminium and its alloys, since their ductility, formabil-
ity and low density can be combined with the stiffness2. Cell model
and load-bearing capacity of the reinforcement. Micro-Micromechanical models for ductile damage and frac-
scopically, the mechanism of failure seems to dependure are based on the notion that these physical pro-
on many factors, such as the strength of the interfaceesses can be described by the structural behaviour of
between the particle and the surrounding matrix, theelatively simple unit cells [7]. Cell model calculations
strength and reliability of the reinforcement and theare normally used to study microscopic voids in ductile
matrix mechanical properties [2]. This paper describesnaterials [8]. However, in this research, a cell model
an investigation into modelling of particle cracking.  is used to study metal matrix composites by simulating
To study the parameter dependence of@l parti-  their behaviour for varying triaxiality of the stress state.
cle fracture in a ductile AA 6061 aluminium matrix, an An acceptable disadvantage of this approach is, that the
axisymmetrical finite element model based on a simpleelative position of the ceramic particles in the matrix
unitcellis used. A limitation of this continuum mechan- is fixed.
ics model is that there is no length scale included inthe The continuum is considered to consist of a peri-
analyses and the results are thus insensitive to the modic assemblage of hexagonal unit cells approximated
crostructural size and specifically to the reinforcemenby circular cylinders, see Fig. 1, which allows for an
size. However, this can be overcome by using Weibullaxisymmetrical calculation. Every cell of initial length
statistics. 2L g and radiudxy contains a spherical particle of radius
Work on commercial aluminium alloys reinforced ro. In order to simulate the constraint of the surrounding
with either AbO3 or SiC particles [3—6] have demon- material, the cylindrical cell is required to remain cylin-
strated that reinforcements are broken progressiveldrical throughout the deformation history, i.e. the top
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Figure 1 Micromechanical modelling of a matrix containing a spherical particle.

and bottom faces as well as both sides should remaimodel, it is assumed that flaws on the surface have no

flat and parallel. greater influence than those in the interior. If surface
During deformation, the surfaces normal to the ax-flaws dominate failure, then the volume terw/(Vo)

ial and radial directions are subjected to homogeneoushould be replaced by an area terftyy £) [12].

displacements in these directions respectively, whereby

the ratio,p, of the average applied true stressgsand 4. Finite element calculations

0721s kept constant. This ratio is often called the stressrpe MMC is modelled with a matrix of AA 60615 =

proportionality factor and is given by [9]: 69 GPay = 0.33,0ys = 276 MPa) and 20 vol % ADj;
_ o (1) particles with a diameter of 4 or 8m (E =393 GPa,
p= Ozz v =0.27,0ys= 2000 GPa, the latter is a fictitious high

value to prevent plastic deformation in the ceramic par-
ticle). E is the Young's modulusy is Poisson’s ratio
andoys is the yield stress. The behaviour of a ductile
aluminium matrix is studied for two hardening expo-
3. Weibull model nent values, (i.e.n = 4.35 and 14.94). The first is
When modelling the survival probability of ceramic, a value from literature for AA 6009-T4 [14] measured
the Weibull model [10] is often found to be applicable on tensile specimens in the extruded direction, the lat-
[11]. If one can assume the flaw size distribution to beter is a value measured in the laboratory, on tensile
fractal-like, this approach will be valid regardless of specimens AA 6061-T651 taken perpendicular to the
their size [12]. The size of a critical flaw will simply extruded direction. The hardening exponent is defined
become smaller and the particle strength increases, as the uniaxial stress-strain relation in the form of a
the particle volume decreases. A fractal distribution will power law:
ensure that there is always a distribution of flaws within

wherebyoy, is the stress in the radial direction asg,
in the axial direction.

the particles on a scale finer than the particle size. % if e < %
Using Weibull statistics, the survival probabilit$, E= Yoy o \" . Oys (4)
of a ceramic particle volumé/, in case of a uniform E(_) if & > =
stress distribution, is governed by Oys
V /o \™ whereE is the Young’s modulus anéls is the yield
S= exp{——(o—o) } (2)  stress.
0

Finite element calculations were done fot 0 (uni-
whereo is the stress in the particleg andVp are two  axial tensile test) and 0.7 (triaxial tensile test). For all
constants with dimensions of stress and volumgi§  calculations, a particle with a diameter ofin, m =
often referred to as the characteristic stress), respedb, oo = 350 MPaoys = 276 MPa, a hardening expo-
tively, which are introduced for dimensional purposesnent for the matrix oh = 14.94 andVpy = 1 mn?¥ is
[13] andm is the Weibull modulus. This equation can considered to be the reference situation for the MMC.
be rewritten, allowing a straight line representation of In order to calculate the survival probability of a ce-
gradientm, when InIn(15) is plotted against Il : ramic particle in an MMC, calculations on the cylindri-
1 calunitcell have been performed using the MARC finite
IniIn= =1In (—) +m-Inc—m-Inog  (3) elementprogram[15]. The finite element mesh used for
S Vo calculations consisted of 350 isoparametric quadrilat-
The strength of a ceramic particle is essentially limitederal 4-node elements (140 for the particle and 210 for
by pre-existing critical flaws which are present in thethe matrix), as shown in Fig. 2. Due to symmetry, only
material, i.e. surface and volume flaws. In the presenthe region hatched in Fig. 1 needs to be considered.
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Figure 2 Finite element mesh used for calculationss axial direction
andr is radial direction.

For every of the four integration points of each finite

element belonging to the patrticle, the principal stresse
o1, 0 andos are calculated and these values are aver?P

whereq is related to the ratio of compression strength
and tensile strength of the material and can be calculated
using the following equation:

— 3(Gc/Ut -1 (6)
(oc/ot+ 1)
whereo. andoy are the compression strength and tensile
strength respetively. In the present calculatieffe; =
10 was used. Now, for a givery andm, the survival
probability S can be calculated.

It should be mentioned that debonding of ceramic
particles is excluded in this investigation, since the
present model does not yet contain a criterion with
which the occurrence of interface failure between the
ceramic particle and its surrounding aluminium matrix
can be calculated.

5. Results and discussion

In this investigation, the parameter dependence of par-
ticle fracture in proportional loading histories is exam-
ined. The parameters varied are the loading ratio via
the constanp, the Weibull modulusn, the hardening
exponenin for the matrix, the characteristic stress

the yield stress for the matrix,s and the diameter of the
ceramic particle. For all calculations, data are plotted
’g\gainst the macroscopic applied axial stress since

p varies from element to element.

aged to get the three principal stresses for each element. ) )
Furthermore, the volume of each element is calculatec®-1. Reference configuration

Using the stresses, the net applied stoeisshe particle
is calculated using the Dcker-Prager criterion (from
this point forward this stress will be denotedaas):

ovp = y/3[(01 — 022 + (02 — 03 + (03 — 0)?]

In Fig. 3, the survival probability is plotted as a function
of the macroscopic axial stress applied on the unit cell
for the reference state of the MMC.

Regarding p =0.7, this calculation results in a
straight line of gradient 15 which is the value that was
used for the Weibull modulus. When comparing load-
ing ratiosp =0 and 0.7, it can be seen that at lower

+ %a(m + 02 + 03) (5) stresses both calculations result in a straight line of
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Figure 3 The survival probabilityS as a function of macroscopic axial stress for a particle with a diameter of 4m with loading ratiosp = 0 and

0.7 (n= 15,00 = 350 MPaoys = 276 MPa anth = 14.94).
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Figure 4 The survival probabilitySas a function of macroscopic axial stresgfor m= 15 and 20 with loading ratigs= 0 and 0.7 (particle diameter
=4 um, oys =276 MPan = 14.94 andoo 350 MPa).

gradient 15, i.e. the survival probability variation of the both loading ratiop = 0 and 0.7 and plotted vs. the
unit cell equals that of the ceramic particle. However,macroscopic axial stress; in Fig. 5.
when the stress exceedsdpy) = 5.5~ 245 MPa, some It can be seen that there is a linear relation between
curvature occurs in case pf= 0, whereas the calcula- opp ando,; up to approximately 330 MPa in case of
tion with p = 0.7 remains a straight line. Furthermore, p = 0 and up to 1100 MPa in case pf= 0.7. When
it is observed that a triaxial loading ratio results in athe stress becomes higher than 330 or 1100 MBa,
lower survival probability of the ceramic particle than turns out to be dependent on the position in the patrticle,
the uniaxial loaded case. i.e. at the same macroscopic axial stress, all 15 nodes
From the above, it can be concluded that in case ohave a different Ducker-Prager stress. Because of the
o = 0.7, the survival probability of the ceramic particle stress distribution in the particle not being uniform, the
is governed by a Weibull distribution, whereasfo=0  applied stress in Equations 2 and 3 should actually
this is no longer the case from the point where curvaturde replaced bypp(X) = o, f(X) wheref (x) is some
starts. function of the positiorx in the particle. Equation 3
then becomes:

5.2. Weibull modulus 1 f f(X)de
To verify whether the gradient in Fig. 3 is the Weibull InIn = =In ("4> +m-Inoz;;—m-Inog
modulusm, calculations were also done for a different Vo

value fn = 20). The results of these calculations are @)
shownin Fig. 4, where the survival probability is plotted
as a function of macroscopic axial stressfior= 15  From this equation it can be seen, that as a result of
and 20, again with loading ratigs= 0 and 0.7 (particle non-uniformity of the stress, there is an additional fac-
diameter= 4 um,n =14.94 ando =350 MPa). These tor, which explains the translation along the survival
calculations resultindeed in gradients 15 and 20, so thprobability axis when going frona = 0to 0.7.
straight line indeed represents the Weibull modutus To explain the curvature occurring for=0in Figs 3
The overall appearance in caseoof= 0 or 0.7 remains  and 4, it can be concluded from Fig. 5 that, in a plot of
the same; i.e. a straight line of a gradient of the appliedn In(1/S) vs. In(;,), from the point where a straight
mfor p = 0.7 and the occurrence of curvature foe=  line is no longer obtained, the stresses in the particle
0, whereby the shape of curvature differs slightly forare not only non-uniform, but also non-proportional
bothm-values. due to plasticity in the matrix surrounding the ceramic
particle. Now, f (x) in Equation 7 is also a function
of o;2. For p = 0, it turns out that the regime where
5.3. Stresses in the particle the stresses become non-proportional is just where the
Equations 2 and 3 are valid for a uniform stress distribusurvival probability goes rapidly from 1 to 0, while for
tion in ceramics [11]. To investigate the uniformity of p = 0.7 this is at a stress of 1100 MPa, which will not
the stress inside the particle, 15 nodes near the interfad®e reached in this calculation. The latter can be seen
were chosen and for these nodes the actuakkei- in Fig. 6, in which the survival probability is plotted
Prager stresspp was calculated with Equation 5 for versus the macroscopic axial stress for the reference
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Figure 5 The Duicker-Prager stressyp as a function of macroscopic axial stress for 15 nodes near the interface of the particle with a diameter
of 4 um (oys =276 MPa andh = 14.94).
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Figure 6 The survival probabilityS as a function of macroscopic axial stress for a particle with a diameter of gm, p =0 and 0.7 fn1= 15,
o0 =350 MPagys =276 MPa and = 14.94).

configuration witho = 0 and 0.7, where for the latter and loading ratiop = 0 and 0.7 (particle diameter
a survival probability of zero is already reached at a4 um, m = 15 andog = 350 MPa).

macroscopic axial stress of 500 MPa. Again, a straight line of gradient 15 and the curvature
incase ofp =0above In§,,) =5.5is observed. Incase
5.4. Matrix hardening of p = 0.7, both calculations coincide completely and

If plasticity in the matrix surrounding the ceramic par- for p = 0the calculations coincide up to the pointwhere
ticle causes the curvature fpr=0, it seems useful to curvature starts. Fgr = 0.7, this means that a variation
investigate the influence of different hardening expo-of the hardening exponent is of no influence since the
nentsn for the aluminium matrix material. The results matrix material remains elastic throughout the loading
of these calculations are shown in Fig. 7. The survivahistory. However, in case ¢f = 0, a lower hardening
probability is plotted as a function of macroscopic ax-exponent results in less curvature; i.e. plasticity in the
ial stress for an MMC with an AA 6061 matrix with surrounding matrix occurs, but to a lesser extent as the
hardening exponents = 4.35 and 14.94 respectively, hardening exponent becomes lower.
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Figure 7 The survival probabilityS as a function of macroscopic axial stress for hardening exponents=4.35 and 14.94 with loading ratios
p=0and 0.7 (particle diametet 4 um, m= 15, oys = 276 MPa ana = 350 MPa).

5.5. Characteristic stress and yield stress oys =200, 276 and 300 MPa. Equation 7 can be rewrit-
When varying the characteristic stregsa parallel shift ~ ten in the following equation:
of the curves is observed. This can be seen in Fig. 8,

m
in which for a particle with a diameter of dgm,m = |nIn=+m-.In 22 = In (M) +m.In2%
15 andn = 14.94, the results for characteristic stresses Oys Vo Oys
oo = 350 and 525 MPa are shown for a loading ratio ®

o = 0. As indicated in this figure, the shift between the
calculations can be derived from Equation 7 as beindNow, if the left-hand term of this equation is plotted on
In(350/525%° = —6.1. the vertical axis and min(o,,/oys) on the horizontal
Since all calculations fop =0 start with a straight axis, a ‘mastercurve’ can be created eliminating the
line of gradientm, but start to curve when the macro- effect of og andoys. Two variables which still affect
scopic axial applied stress approximates the yield streskie mastercurve are the matrix hardening exponent and
of the matrix material, results are also shown for calcuthe Weibull modulus; the first changes the curvature
lations with three different matrix yield stresses namelyand the latter results in a vertical shift. An example
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Figure 8 The survival probabilityS as a function of macroscopic axial stress for characteristic stresseg = 350 and 525 MPa and matrix yield
stressesys = 200, 276 and 300 MPa with loading rafio= 0 (particle diametet= 4 um, m= 15 andn = 14.94).
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4.8 + with Equation 3 through the larger volume, the calcu-
d lations for a particle with a diameter of 8m result

23 ¢ in comparable lines as for a diameter ofuh; i.e. a
o straight line of gradientn = 15 in case ofp = 0.7 and
0271 curvature above a certai~value forp = 0. For 8um
‘ g diameter it turns out that curvature is to a lesser extent
27T than for 4z.m.
S27 "purely elastic response’

6. Conclusions
17T 1. Based on present calculations it can be concluded
g that the relation between the macroscopic applied stress

Inln(1/S) + m-In(Go/Gys) [-]

102 on the MMC and the survival probability of the ceramic

1274 particle can be described by the Weibull modutysas
e long as the stress distribution in the matrix surrounding

-152 : , , , , : } | the particle is proportional to the applied load, e.g. in

Fig. 4, the particle should fail at a stress in the range
where there is a linear relation between thei€ker-
m-In(G,,/Gy,) [-] Prager stresspp and the macroscopic axial stress.
Figure 9 ‘Mastercurve’ for characteristic stresses = 350 and 525 2. When Io_adlng the m?tal- matrix composite .tI’IaXI—
MPa and matrix yield stressegs = 200, 276 and 300 MPa, all for a ally (o ,=_0'7) instead of unl‘?x'al,ly/( =0),the SurVIVaI_
fixed valuen — 14.94 andn — 15. probability of the AbO3 particle is lower and the parti-
cleis likely to fail before plasticity in the matrix occurs.
3. Considering the parameter dependence of particle
is given in Fig. 9 forn = 14.94. It turns out that, as fracture, it can be concluded that for the same loading
long as all deformations in the MMC are purely elastic, ratio,
f (x) is independent on the applied stress, resulting in
a gradient 1. As soon as plasticity in the surrounding e anincrease in the hardening exponeof the ma-
matrix occurs,f (x) becomes dependent on the applied  trix, results in coinciding calculations for=0.7
stress and the mastercurve diverges from this gradient. and 0; The calculations coincide up to the point
where curvature starts, whereby a higher harden-
ing exponent results in less curvature as a result of
5.6. Particle size less plasticity in the matrix,
Finally, when the particle diameter is doubled from 4 e a variation of the characteristic stregsresults in
to 8 um diameter, it can be seen in Fig. 10 that, forthe  a parallel shift of the curves for bogh=0and 0.7,
same loading ratio, the survival probability decreases e a ‘mastercurve’ for a fixed value ofcan be made
with increasing particle diameter. Besides a shiftalong  independent of characteristic stressgand matrix
the survival probability axis which can be explained yield stressesys and
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Figure 10 The survival probabilityS as a function of macroscopic axial stresg for particles with a diameter of 4 or8m with loading ratiosp =
0and 0.7 = 15,009 = 350 MPaoys = 276 MPa andh = 14.94).
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